

REPORT No. 12 03894-a **CLIENT** PIMAS PLASTIK INSAAT MALZEMELERI A.S. **CONTACT PERSON EVREN COBAN** Beylikbagi Mahallesi Istanbul Caddesi no:29 **ADDRESS** 41420 GEBZE – KOCAELI Resistance to artificial weathering, Charpy impact and **PURPOSE** colour differences **TESTED MATERIAL PVC** profile **RECEIPT DATE** 02.10.2012 **TEST DATES** 15.10.2012 / 28.08.2013

06.09.2013

REPORT EMISSION DATE

Blar Roois

Susana Rodríguez **Construction Materials Characterization** Laboratory Technician **Technological Services Division**

Blanca Ruiz de Gauna **Construction Materials Characterization** Laboratory Manager **Technological Services Division**

* The results contained in this report refer solely and exclusively to the material tested at the time and under the conditions in which the measurements were taken.

* This report may not be reproduced without the express authorisation of FUNDACIÓN TECNALIA R&I, except where done so in its entirety.

TECNALIA RESEARCH & INNOVATION Área Anardi, 5 E-20730 Azpeitia (Gipuzkoa)

T 902 760 020 T +34 946 430 850 (International calls)

REPORT No.: 12_03894-a

1. TEST SPECIMENS

PVC profile samples belonging to the company "*PIMAS PLASTIK INSAAT MALZEMELERI* **A.S.**" was received at Fundation Tecnalia R&I on October 2th of 2013 with the following reference:

• PIMAPEN RAL-A 213 S TS 5358/1171166

2. TESTS REQUESTED

The requested tests are the following:

 Determination of the resistance to artificial weathering according to UNE-EN 513:2000

After aging are evaluated the following properties:

- Determination of Charpy impact properties, non-instrumented impact test according to UNE-EN ISO 179-1:2011
- Colour differences according to ISO 7724-3:1984

3. CARRIED OUT TESTS

<u>Determination of the resistance to artificial weathering according to UNE-EN</u> 513:2000

The test consists in subjecting the test specimens to the radiation of a xenon-arc luminous source for a specific period. Test specimens are attached to the mobile carousel that turns around the lamp with a particular system of filters suitable for outdoor exposure:

The xenon arc source provides a spectral irradiance (550 \pm 55) W/m² between 300-800 nm and (60 \pm 12) W/m² between 300-400 nm.

The test was carried out under the conditions described in Method 2 of this standard that simulates severe weather, and they are:

- Black plate temperature is $(65 \pm 2)^{\circ}$ C.
- The spray cycle: 6 minutes spray and 114 minutes dry period
- The relative humidity during the dry period is $(65 \pm 5)\%$.
- Test time 6000 hours for 12 GJ/m².

<u>Determination of Charpy impact properties, non-instrumented impact test</u> <u>according to UNE-EN ISO 179-1:2011</u>

Is determined the Charpy impact strength of two series of samples, one aging according to the procedure described above and another unaged.

The test specimens have the following dimensions:

- Length: (50 ± 1) mm
- Width: (6 ± 0,2) mm
- Thickness: Equal to the profile wall

In the center of the sample there are two notches aligned with groove bottom radius of 0.25 mm always leaving a remaining with of 3 mm.

The impact strength is determined as energy / remaining section (kJ/m²).

Colour differences according to ISO 7724-3:1984

The CIELAB chromatic system has been used to take the measurements. It transforms the optical stimuli into a series of quantifiable L*, a*, b* coordinates, where:

- L* corresponds to luminosity or clarity.
 - The a* and b* coordinates form a plane where the deviation of the achromatic point corresponds to the L luminosity, where:

A +a* deviation implies a change in colour to red

- A -a* deviation turns colour to green
- A +b* deviation implies a change in colour to yellow
- A -b* deviation -b* is a change in colour to blue

Based on a colour comparison, the L^* , a^* , b^* coordinates in the tested sample are deducted from the L^* , a^* , b^* coordinates of the reference colour, thus obtaining the deviation values of the three coordinates:

 $\Delta L^* = L^*$ test – L* reference $\Delta a^* = a^*$ test – a* reference $\Delta b^* = b^*$ test – b* reference

so: if ΔL^* is positive the sample shall be clearer than the reference if ΔL^* is negative the sample is darker than the reference if Δa^* is positive the sample will have a higher red component reference if Δa^* is negative a sample will have a green component that increased referrals if Δa^* is positive a sample will have a green component that increased referrals if Δa^* is negative a sample will have a green component that increased referrals if Δa^* is negative a sample will have a blue component that increased referrals

The difference in total colour ΔE^* will be:

$$\Delta E^* = \sqrt{\left(\Delta L^*\right)^2 + \left(\Delta a^*\right)^2 + \left(\Delta b^*\right)^2}$$

The color comparison method used has been used as a reference ten individual measurements in each case.

4. RESULTS

Determination of Charpy impact properties, non-instrumented impact test <u>according to UNE-EN ISO 179-1:2011</u>

In the following table the obtained results are showed:

Sample	Impact resistance after aging (KJ/m ²)	Impact resistance unaged samples (KJ/m ²)	
1	82.0	84.9	
2	76.2	81.4	
3	84.7	80.9	
4	83.0	84.4	
5	85.6	87.1	
6	79.5	78.3	
Average	81.8	82.8	
Standard deviation	3.5	3.2	

<u>Table I</u>

Impact resistance difference between the aged and unaged samples	Specification	Assessment
1.2 %	≤40%	Satisfactory

<u>Colour differences according to ISO 7724-3:1984</u>

The obtained results for the colour differences are showed in the following table:

<u>Table II</u>

∆ L *	∆ a *	∆ b *	∆ E *
-0.43	0.09	0.25	0.50

Result		Specification		Assessment	
∆ E *	$\Delta \mathbf{b^{*}}$	∆ E *	$\Delta \mathbf{b}^{\star}$	∆ E *	∆b*
0.50	0.25	≤5	≤3	Satisfactory	Satisfactory

